The forcing hull and forcing geodetic numbers of graphs
نویسندگان
چکیده
منابع مشابه
Complete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملOn the forcing geodetic and forcing Steiner numbers of a graph
For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W -tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steine...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کاملThe lower and upper forcing geodetic numbers of block-cactus graphs
A vertex set D in graph G is called a geodetic set if all vertices of G are lying on some shortest u–v path of G, where u, v 2 D. The geodetic number of a graph G is the minimum cardinality among all geodetic sets. A subset S of a geodetic set D is called a forcing subset of D if D is the unique geodetic set containing S. The forcing geodetic number of D is the minimum cardinality of a forcing ...
متن کاملOn the Steiner, geodetic and hull numbers of graphs
Given a graph G and a subset W ⊆ V (G), a Steiner W -tree is a tree of minimum order that contains all of W . Let S(W ) denote the set of all vertices in G that lie on some Steiner W -tree; we call S(W ) the Steiner interval of W . If S(W ) = V (G), then we call W a Steiner set of G. The minimum order of a Steiner set of G is called the Steiner number of G. Given two vertices u, v in G, a short...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2009
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.03.023